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Molecular 
dynamics articles

https://doi.org/10.1371/journal.pcbi.1002907

Drug design
Biophysics

Materials
…



Born Oppenheimer MD

Calculate energy/forces for fixed nuclei positions

Integrate nuclei dynamics

r1…rN ↦ E[r]
{Hartree Fock, DFT, 

Coupled Cluster,  …}

Schrödinger Eq. ≈

d2ri

dt2
= − ∇iE[r]/mi Not treated: 

Quantum mechanics of nuclei (e.g. hydrogen)

Non-equilibrium dynamics of electrons


- von Neumann eq. for density matrix

- non-adiabatic excited state MD

→ separation of scales

r1

r2

r3



Classical potential / 
force field Schrödinger Equation

Pros: Accurate, 
transferable

Cons: Computationally 
demanding

Fast
Pros:

Cons:
Not very transferable, 
Non-reactive 
Laborious parameterization

Machine learning to 
emulate Schrödinger eq.



QM9 - 130k organic molecules

C, N, O, F (up to 9) + H

Lubbers et al., https://arxiv.org/abs/1710.00017

Relaxed geometries

1 kcal/mol ≈ 1/23 eV

ethane
toluene

isoleucine
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Classical

Tight-binding

DFT

CCSD(T) 

Log cost

Exact solution? 

Levels of quantum chemistry

𝒪(n7)
𝒪(n) − 𝒪(n3)

𝒪(n)

𝒪(n) − 𝒪(n3)

∼ exp(n)

…
Machine 
learning!



Symmetries:

Locality + Coulomb interactions

Hierarchicality (e.g. many-body expansion)

Do not constrain to partially correct physics?

Physics informed machine learning

Time reversalTranslation

Physical principles:

Rotation Permutation



Transplant techniques

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

VGG: ~108 parameters trained on 106 images AlphaGo / AlphaZero

Deep learning philosophy:

• don’t hand design features

• use large training dataset



Neural Net

Conv Net

Molecular 
generalization

zn+1
a = fnonlin(∑b Wabzn

b + ba)

zn

…

…

zn+1(x) = fnonlin[(W * zn)(x) + b(x)]

zn+1(x) = fnonlin[…zn…]

https://ai.googleblog.com/2017/04/predicting-
properties-of-molecules-with.html

zn+1 zn+2

See also: DTNN, MPNN, SchNet, …



HIP-NN

Local messages Pairwise distances

   (Translation/rotation invariance)


Learned parameters

Lubbers et al., “Hierarchical modeling of molecular energies using a deep neural network”
https://arxiv.org/abs/1710.00017

Layer ℓ = 1 ℓ = 2 ℓ = 3

Descriptors of 
atom i



Symmetries of ML potential

Time reversal:

Translation,
Rotation:

Atomic positions represented 
entirely with pairwise distances

Forces are generated as exact 
derivative                       .f = − ∇ ̂E

Physical principles
Spatial locality: Energy decomposed locally,

̂E = ∑
i

̂Ei

Hierarchicality: Energy decomposed 
hierarchically                    .̂Ei = ∑

ℓ

̂Eℓ
i

R 
= 5

 A

R 
= 5

 AR 
= 5

 A

R 
= 5

 AR 
= 5

 A

R 
= 5

 A

R 
= 5

 A



Training to energies and forces

Loss ℒ = ∑
Data

[c1(E − ̂E)2 + c2(∇rE − ∇r ̂E)2]

Energy …̂E[r, w]

Backprop 1, forces

………… …

̂E

Backprop 2, weight updates: ∇wℒ

∇r ̂E

ℒ



Active learning
Computer should help us design good datasets!

Smith et al., “Less is more: sampling chemical space with active learning”
https://arxiv.org/abs/1801.09319

Molecular 
dataset

ML potentialQuantum 
calculations

MD simulationML uncertain? 
Add to dataset!

Retrain



Active learning 
progression

Errors

ANI-1 ANI-1x
22M 5M

JS Smith, et al.; The Journal of 
Chemical Physics, (2018), 148 

(24), 241733

Active learning vs random sampling

Dataset sizes



Transfer learning
Combine lots of DFT data with some high accuracy CCSD data

Smith et al., “Outsmarting Quantum Chemistry Through Transfer Learning” [ChemRxiv:6744440]

• Subsample 10% of 
ANI-1x training data 
(0.5M of 5M) 

• Recompute CCSD(T)/
CBS level 

• 340k parameters 
fixed, re-train 60k 

• 107 faster than DFT 



Hydrocarbon reaction energy benchmark

Reference data: Peverati, R.; Zhao, Y.; Truhlar, D. G., J. Phys. Chem. Lett. 2011, 2 
(16), 1991–1997.

Examples

1
2



Transfer learning

Smith et al., “Outsmarting Quantum Chemistry Through Transfer Learning” [ChemRxiv:6744440]

Direct training



Density of bulk water

Mauro Del Ben, Mandes Schönherr, Jürg Hutter, 
and Joost VandeVondele; J. Phys. Chem. 
Lett., 2013, 4 (21), pp 3753–3759

NPT conditions: 295K; 1Bar 
267 waters

J. S. Smith, in preparation



Inferring local charges to produce dipoles

Training 
Data DrugBank Polypeptides

Size

Sifain et al., “Discovering a Transferable 
Charge Assignment Model Using Machine 
Learning” [ChemRxiv:6638981]



Inferred charges generalize to quadrupoles



IR Spectra



Conclusions

Better transfer learning? Can we incorporate data from 
experiment (e.g. phase diagrams)?

Use ML to predict effective quantum Hamiltonians?

Accounting for electron dynamics?

Joint-training to more information from wave-function? 

Machine learning to emulate quantum chemistry works 
great!

Future directions?
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Entire HIP-NN

Sensitivity functions

Basis expansion

Res-net

Interactions

Activation fn.

Locality/ 
Hierarchicality

ℒ = ∑
Data

[c1(E − ̂E)2 + c2(∇E − ∇ ̂E)2] Loss fn.

̂Ei = ∑
ℓ

wℓ
a zℓ

i,a


